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ABSTRACT 

A necessary and sufficient condition is given so that in a domain ~q there are no 
functions whose average over all balls contained in ~ of radii rl, r2 vanish except 
the zero function. 

1. Introduction 

One of the oldest questions in integral geometry  has been that of recovering a 

function [ in R" from the knowledge of its average over  balls. It is easy to see 

that unless [ decays sufficiently fast at infinity the average over  all balls of a fixed 

radius could vanish without f being identically zero. It  is not always possible to 

assume such decay but a very elegant result of Zalcman [20] and, independently,  

Brown-Schre iber -Taylor  [10], describes explicitly a countable set E,  such that 

averages over  all balls of radii rl, r2 suffice as long as r,/r2 ~_ E . .  This " two 

circles" theorem can be described as saying that the map 

C(R°)~ C(R°)@ C(R"), 

f---~ ( fB, , . , , ) [ (y)dy,  fB,x. , ,) /(y)dy) 

is injective if and only if r,/r2 ~_ E ,  ( B ( x ,  r) = {y ~ R" : Ix - y ] < r}). Under  

slightly stronger conditions on the quotient rdrz this map has also a continuous 

and explicit inverse [8]. This result and other variants of the so-called Pompeiu  

problem have been generalized to symmetric spaces (see the surveys [21], [2] for 

positive results and their limitations). 
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In practical situations of a tomographic nature one is limited to balls that fit 

into a fixed region f~. One could take smaller and smaller balls when approach- 

ing the boundary 0 ~  of ~ ,  this is roughly the situation when we consider the case 

= unit ball of R" as the hyperbolic space, but it is clear that it might be hard to 

accomplish if we are dealing with physical devices whose size cannot be made 

infinitesimally small or cannot even be changed at will. It is this kind of problem 

that we call a local version of the two-circles theorem. The main difference with 

the above-mentioned results is that we do not have any longer the whole group 

of Euclidean motions at our disposal which was the crucial ingredient lying 

behind the two-circles theorem and its generalizations. The inversion formula of 

[8] would allow us to reconstruct f away from 0 ~  but gives rio indication of 

whether we could change the values of f in a collar-like region near ,911 without 

affecting its average. There is some recent work on systems of convolution 

equations in convex domains which deals with this type of question [4] but the 

hypotheses required are far too restrictive to be satisfied by our simple-looking 

problems. Nevertheless, using a combination of ideas from classical harmonic 

analysis and results of Cormack-Quinto on the Radon transform on spheres [12] 

we are able to prove the following. 

THEOREM. Let r], !"2 be positive numbers, rdr2 ~. E,, I~ an open subset of R" 

such that every point lies in an open ball contained in ~ of radius strictly larger 

than rl + r2. If f E C(f~) satisfies 

fs for every B(x, rj)C_tq, ] = 1 , 2  f (y )dy  = 0  
(x,r D 

then f =-O. Furthermore, this statement does not hold if I~ fails the above 
geometrical restriction. 

The method of proof allows us to generalize this theorem greatly, providing in 

particular new local mean-value theorems for harmonic functions. 

We would like to express our appreciation to Professor L. Zalcman who called 

our attention to these problems. 

The second author wishes to thank the Mathematics Department of the 

University of Maryland for its hospitality while this work was carried out. 

2. Preliminaries 

We will follow the standard notation for distributions found in [14]. We 

denote B(x, r) = {y E Rn: Ix - y [ < r} (r > 0), /~(x, r) its closure and X, the 

characteristic function of B(O,r). Let t~ be an open set in R", ~ , - -  
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{x Elq:  d(x, f Y ) <  r}. For a locally-integrable function f in an open set f t  the 

average 

1 f~ f(y)dy (1) A'(f'x)=to,---7 ,x.,, 

is defined for x E ft,. Here to, is the volume of B(0, 1). If we let ix, = X,/to.r", we 

can interpret this average as a convolution and hence it makes sense to define it 

for f E ~ ' ( f ~ )  giving a distribution A,( f )  in ~ ' ( f l , ) ,  namely A, ( f )= f* i x , .  
Therefore, for uniqueness questions, if the averages of f are zero, by restricting 

ourselves to 11,, e > 0 small, we can assume f E C ~. Henceforth, all distributions 

with vanishing averages will be assumed to be C ~ functions in fL 

For r > 0, we denote by or, the distributions defining the spherical average 

(2) A,(f ,x)= ~s--' f(x + ry)do'(y) = (~, * f ) (x) ;  

dcr is the normalized Lebesgue measure on S "-1. 

For T E ~ '  the Fourier transform 

(x ] 
I 

is an entire function in C" which satisfies, for some A, N > O, the estimates 

(3) I T(~')I _-< A(1 +1~1) N exp(H(Im ~')), 

where ~ = ~ + iT, ~, ~1 E R", Im ~ = 7/ and H is the supporting function of the 

support of T, i.e." 

H ( ~ )  = Max{(x ] 7/): x E supp T}. 

Note that H is also the supporting function of cv(supp T), the convex hull of 

supp T. The Fourier transform is an isomorphism between the convolution 

algebra ~ '(R") and ~'(R"), the algebra of entire functions of exponential type 

and polynomial growth on the real axis. 

A distribution T will be called invertible (or T is slowing decreasing) if 

whenever S E ~f'(R") and S / T  is an entire function, then there is a distribution 

U ~ ~'(R") such that 0 = S/7", that is 

(4) S = T* U, 

and we have the identity 

(5) Hs = Hr + Hu 
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or, what amounts to the same thing, 

(6) cv(supp U * T) = cv(supp U) + cv(supp T), 

where, for two sets A, B C R", we have A _-- B = {x --- y ; x ~ A, y E B}. We will 

need to use that/z, is an invertible distribution. This will follow from the explicit 

formula for/2, given below and the characterization of invertible distributions: T 

is invertible if and only if there is a positive constant a such that for all ~ E R" 

(7) Max{t Z(~:+ rl)l: n ~T", [hi< a.log(2+l#l)}_->(a +1~:1) -°. 

The Fourier transform of a radial distribution T is a radial function, i.e.: if 

(T, foA- ' )=(T , f )  
for every A E O(n) then 

~(0 = i " ( A  • 0 

for every A E O(n), ~'~C",  and depends, for ~:~R", only on ]~¢1. Hence we 

consider the associated even entire function i" of one variable by 

(8) T(I~I) = T(~:) and ~.(~.)= 3~((~.~+...+~.2),,2). 

Let us call g'~(R") the space of radial distributions. This correspondence 

establishes an isomorphism between the algebras ~[j(R") and ~/p(R). Using this 

notation we have 

(9) /2, (t) = n2 ~" 2~/2F(n/2)J.12(rt)/(rt)"n, 

(10) £ ( t )  = 2'"-2)/2F(n/Z)J(. 2u2(rt)/(rt)(" 2)/2. 

and, more generally, if [(x)= ok(Ix 1) is a radial function of compact support 

(11) f(C) = f( t )  = (2~)"/2 f-L t , .  2,,2 , 4 , ( 0 ) 2 , .  2,,2(pt)p"P-do (Ill = t). 

To show that /z, is invertible it is now sufficient to recall the asymptotic 

development of the Bessel functions [19] on the positive real axis 

(12) J.(t)= N/~ t-'2 cos (t 

It follows, for [~[ _-_ 1 and some C > 0, 

• r 4 2~) + O(t-3n)" 

which is the condition of invertibility. 
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From (12) we also obtain MacMahon's  asymptotic development  of the positive 

zeros a~v of Jr 

O <  a l , ~  < 0~2.~ < " " " , 

(13) ak.,, = (2k + 1) 2 + (2v + 1) 4 + O(1/k) 

which will be used further on. 

3. Series development of mean-periodic functions 

Let II be an open convex set in R" and K = cv(supp /x ), /x E ~ ' (R  "). We say 

that a function f C C ~ ( f l -  K)  is mean-periodic with respect to /x if 

(14) l.t * f ( x ) = ( ~ , , f ( x  - y)) = 0  for all x E l ) .  

If an exponential-polynomial,  that is a finite linear combination of terms of the 

form x ' e  "x I ~  ( x  j = x{  . . . .  xJ, ", jk ~ N, 1 < k =< n), is mean-periodic with respect 

to tx, then the frequencies ~" must satisfy / i (~ ' )= 0 since 

(15) • e ' " " ) ( x )  = t Z ( O e  'ix'". 

When the zeros of tJ, are simple no non-constant monomials can appear. More 

generally, if a monomia[ x j appears with non-zero coefficient then 

= 0 

for the corresponding frequency ~'. 

For n = 1 there is a well-known series development for such functions in terms 

of the exponential polynomial solution of the same convolution equation (14) 

due to L. Schwartz [17], [15], [13]. The case of interest for us is n =>2, p, 

invertible. In this case, a development in terms of integrals over the zero set of 

has been proved when fI = R" [6]. For f~ an arbitrary convex set, a similar 

development has been proved in [4] but only for a very restrictive class of 

invertible distributions. In all these cases one obtains also some knowledge of 

the behavior of the terms involved in this development.  Unfortunately,  the 

distributions/~,, though invertible, do not satisfy the conditions required in [4], 

as was shown (for a different reason) in [3]; moreover  we are interested in 

[I = B(0, R). Therefore  we cannot depend on any of the previously known 

results. We obtain here a series development  without additional information on 

the coefficients that appear in it; nevertheless the existence of this development  

is all we need later. 
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PROPOSITION 1. Let l] an open convex subset in R" (n >-_ 2), /.~ E $ ' (R n) an 

invertible distribution, K = cv(supp/x). Any function f E  C~(f~ - K),  mean 

periodic with respect to tz, can be written as 

(16) f ( x ) = ~ , P j ( x )  ( x E • - K )  

with Pj exponential-polynomials also mean-periodic with respect to lz, and the 

series is convergent in the C~-topology of 1~- K. Furthermore, given a sequence 

(sj)j~_l of positive numbers, letting Po = 0, we can choose the Pj so that the absolute 

value of all frequencies in Pj+~ exceeds the largest absolute value of the frequencies 

in Pj by at least sj÷,. 

PROOF. Let us show first that, for any s > 0, the exponential polynomials 

which are mean-periodic with respect to/z  and whose frequencies lie outside the 

ball of center 0 and radius s in C n are dense in the space N = {f ~ C ~ ( f l -  K): 

/~ * f = 0 in 12}. N is a closed subspace of a Frechet space and we only need to 

show that if v E $ ' ( ~ -  K)  is orthogonal to the above exponential-polynomials 

then v is orthogonal to N. Hence (~)v is divisible by /2 at every point of 

C" \/~ (0, s). Since n => 2, by Hartogs' theorem, 0;)v//~ is an entire function. Since 

/~ is invertible there is a distribution T E $ '(R n) such that 

~=~,~. 

We need to know where is the support of T. By (6) 

cv(supp ~) = cv(supp/~) + cv(supp T) 

o r  

cv(supp T) - K = cv(supp v) _C fl - K. 

By the Hahn-Banach theorem one concludes that 

cv(supp T) C_ 1~. 

Hence (v, f)  = (~ * f)  (0) = (2~ */x * f)  (0) = ( T, ~ * f)  = 0 for f E N. 
To end the proof of the proposition, we pick an exhaustion of f l - K  by 

convex compacts sets Kj, hence we can find P1, an exponential-polynomial with 

frequencies lying in {~" E C~:/2(~') = 0, I~'l > s,} such that 

sup I f -  P , I <  1. 
Kt 

Let trl = maximum of the absolute values of frequencies in P~. We can find P2 
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with frequencies in {~" ~ C" : /2(~')= 0, 1~'1> s2 + tr,} such that 

max sup [ D~ ([ - P , -  P2)t <½. 

Continuing in this fashion we obtain the desired expansion. [] 

REMARK. One can eliminate the requirement of /~ being invertible by using 

[14, 16.4.1]. 

From (9) we know that the zero v.ariety of 12, is the union of the hypersurfaces 

(17) ffz = ~'~+- • • + K2,= A~,, k = 1 , 2  . . . . .  

where Ak = a~.,/dr. We disregard temporarily the dependence on r though it will 

play a role later on. Furthermore the function /.l, (t) vanishes at t = Ak with 

multiplicity one, in fact 

(18) d"-t/.L (t) = - n2("-2V2F rJ(,m+,(rt)/(rt) "/2 

and well known properties of Bessel functions show that this expression does not 

vanish for t = Ak. Using the asymptotic expressions (12)and (13)we obtain 

(19) 0 # -~-' (Ak) = rnZ("-')~2F(n[2)( - 1)k+'/(hJ) ("+')a + O ( k  

We introduce some auxiliary radial distributions T,.k by the formula 

They are even and entire since/2, ( _+ Ak) = 0. Hence they correspond to radial 

distributions (in fact C '"  functions) whose supports are contained in the support 
of/~,,  i.e. /~(0, r). 

Furthermore they satisfy 

(A + A~,)T,.k = - /~ ,  (21) 

and 

/2',(A~) c o n s t ( -  l)k+'A~ ("+3)/2 + 0(k-("+5)12). (22) T"k(Ak)= 2Ak = 

We remark that these distributions have conspicuously appeared in previous 

work on the Pompeiu problem [1], [7]. 
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PROPOSITION 2. Let  r > 0 be fixed. For any p, 0 < p < ~,  we can decompose (r o 

in the fol lowing form : 

(23) (to = vo + ix, * So, 

where S o is a radial distribution whose support satisfies 

(24) supp S o C /3 (0 ,  Max(r, p) - r), 

and  uo is given explicitly by 

up = - E 5e(Ak) AT,  k" 
" ' 

k g l  

(25) 

hence supp v o C/~(0 ,  r). 

PROOF. We consider  the series 

(26) 5" (hk) tz~.,k(t). g(t)= 

The  coefficients h~25p(hk)/T,,k(hk) are uniformly bounded  by a constant  

depending  only on p as can be seen from (10), (13) and (22), since hk -- const  • k. 

The re fo re ,  if It I < R, Vk > 2R we have I t2T,.k (t)J < const  • k -z which guaran tees  

the convergence  of the series, and shows g is an even ent ire  function.  We can 

obtain more  precise est imates by picking a sequence  of circles of cen ter  0 and 

radii 

Rj = (4j + n + 5)Tr/4r, j = 1,2 . . . . .  

Decompos ing  the sum into those terms where  Ak < 2Rj and Ak => 2Rj one  can 

est imate  the second sum over  It I--Rs by 

Max I C/2,(t)l" Co(p). 
Itl=Ri 

The  first (finite) sum can be es t imated by 

C , ( p ) ( M a x J t 2 t 2 , ( t ) [ ) ( M a  x ~ j 21 ) 
Id =& ~J,, ,,<xk<2,,, A,~ -  tzJ 

where  f~i., is the region ob ta ined  from J t J _-< Rj by removing disks of radius e, 

0 < e very small, about  - )tk. One  can then see, without  difficulty, that  the last 

sum is es t imated by const-  e -j. In any case we obtain as a final es t imate  

Max [g(t)J _-< C(p )  Max I t2/L(t)J.  
ItWRj Itl~Ri 
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Thus g defines a radial distribution of order 2, vo, by ~o = g, one can see vo is 

given explicitly by (25). We also have 

d'o - ~o =/Lh,  

with h an even entire function since g(-----Ak)----~o(-----,~k)= ~o(+--;tk) by (26). 

Since ~, is an invertible distribution it follows that h = So for some So E ~ ( R " ) .  

The identity (6) gives 

(27) cv(supp(tro - vo )) = cv(supp S o )+ cv(supp/z,). 

There are two cases to consider. If/9 _-< r, then the support on the left hand side of 

(27) is contained in/~(0, r) and cv(supp So) = {0}, which says S 0 is a polynomial in 

the Laplace operator; if p > r then the left hand side of (27) is contained in 

/~(0, p), which says cv(supp So) C B (O, p - r ). [] 

REMARK. The decomposition we have just given in Proposition 2 works also 

if we replace o- o by any radial distribution. We need only to change (t/Ak)2 by 

(t/;tk)2q with q a convenient non-negative integer. In particular there is such a 

decomposition with O'o = 8, the Dirac mass at the origin (take q => (n + 1)/4). 

COROLLARY 3. L e t [ b e  a tzr-mean-periodic function in C~(B(0, R)) (R > r). 

Let  I x,,I < R - r. Then, for any p, 0 < p < R - I x,,I we have 

6"e(Ak) A(T,E *f)(xo). (28) Ao(f,x, ,)= (t o * f)(O)= - k~-, ~'~ A] 7',k (Ak), " 

PROOF. It suffices to use (2) and (23). [] 

4. Local two-circles theorem 

Let r~, r, be two positive numbers and consider the distributions ~,,, p,_,. They 

will have no common, mean-periodic, exponential-polynomials if and only if /L.  

and ~,~ have no common zero. By (17) this occurs if and only if 

rdr2 # quotient of two zeros of J./2- 

The set 

E,, = {~,,.,,~/~j.,,~: 1 ~ / ,  k < o~} 

is the exceptional set described in the two-circles theorem. 

PROPOSITION 4. Let  R > r~ + rz, rt/r2 ~. E , .  The only function in C~(B(0, R)) 

which is mean-periodic with respect to both l~,, and t~,2 is the zero function. 
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PROOF. We assume 

Proposi t ion 1 we have 

r, < r2. Let  f E C~(B(O, R))  be g, ,-mean periodic. By 

f ( x ) =  (Ixl<R) 

where the frequencies appearing in the exponential  sums Ps lie in 

{~ E C * : /2 , (~)  = 0} = I..J {~r E C" :  = (ak../2/r~) z} = [_J Vk. 
k ~ l  k_-->l 

We fix now k _-> 1, and consider T,,.k * f which is in C=(B(O, R - rO); fur thermore  

(29) 

F '  ~ i (x  I ~)j) If  Pj ( x )  = X, ,.-j.,= • t h e n  

T,,,k * f = ~. T,,,k * Pj. 
k N l  

* = ''x ' " "  

I 

but ~,.k (¢'j.~) # 0 only if ~j.t E Vk in which case we obtain the value T,,.k (AE) ---- 0 

(where hk is computed  with respect to r~). Therefore  

(30) T,,.k * [ = T,,.k (Ak) E Pj.k 

where Pj.E is the sum of the terms in Pj whose frequencies lie in Vk. This series is 

convergent  in C®(BO, R -r~)). We convolve now with #,._. We obtain 

(31) /~,~* (r,,.k * f )  = 2P,,.k (a~)li~(ak) ~ PS, E 

since #,: is also a radial distribution. The expansion (31) is valid in 

C~(B(O, R - r , -  r2)). Since f is also flr~-mean-periodic we have 

0 = (T,,.k * lz , .* f ) (x)  =/i,~(ak)(T,,.k * f ) ( x )  

for [ x I < R - r, - r2. The hypothesis  rdr2 ft. E,  now implies that  /i,~(Ak) ~ 0. 

Hence 

(32) (T,,,~ * f ) ( x ) = O  for [ x l < R  - r , - r v  

On the other  hand we have (by (22)) 

(A + A~,)(T,,.k * / )  = - (f*/z, ,)  = 0 i n l x l < R - r ~  

hence T,.k * f is a real analytic function in Ix [ < R - r,. We conclude that  
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(33) (T,.k * f ) (x)  = 0 for Ix l<  R - r,. 

Applying now Corollary 3, formula (28), we have 

(34) Ap( f ,x )=0  whenever x < R - r ~ ,  0 = p < R - t x l .  

(We are allowed to take p = 0 by continuity.) In particular 

f (x)  = 0 for [xl=< R - rl. 

To finish the proof of the proposition we need to show f is zero in the 

remaining annulus; we do that using (34). It is at this point that we use 

Cormack-Quinto [12]. For any y E B(O,R), consider R ( f ) ( y ) =  Aj,l/2(f,y/2 ). 

This is the Radon transform on spheres through the origin discussed in [12]. We 

want to show Rf (y )  = 0. We only need to verify that the conditions stated in (34) 

are valid. Here p = l Y I/2, x = y/2, hence 

R - I x l  = R - ly  I/2 = R - p  > R / 2 > p .  

The only condition left to see is that Ix I < R - rl. We have 2r~ < rl + r2 < R, 

hence r~ < R/2 and R - rl > R/2, therefore Ix I<  R - r, holds. 

By [12, Corollary 2] / ( y ) = 0 .  (We note that, in [12], they require that 

[ ~ C*(R ") while we only have f E C*(B (0, R)), but the proof of Corollary 2 

depends on an explicit inversion formula for the Radon transform on spheres 

which uses, for each y, values of f in a neighborhood of/~ (0, I y I).) [] 

REMARK. The crucial point of the proof above is (32). One does not really 

need the whole strength of Proposition 1 to obtain it. One can get it by using the 

density of the exponential polynomial solutions in the sub-space N introduced in 

Proposition 1. Nevertheless, we feel that the proof is clearer using the expansion 

(16) as we have done. 

We want to show that the condition R > r~ + rz is sharp. It is easier to show 

this under the slight restriction that rJr~ is not too well approximated by 

elements in E, .  

DEFINITION. For N > 0 ,  we say that a positive number is N-well approxi- 

mated by points in E, if, for every l > 1, there are indices ], k such that 

(35) I r - I =< l / l ]  N 

where ak = ak.,/2. 

PROPOSmON 5. For any N > 2, the set of numbers N-well approximated by E. 

has zero measure in (0, ~). 
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PROOF. Givenp ,  q, 0 < p = < r = < q  and v_->0, from (13) we have 

ak,~ = ak = (2k + I)Ir/2 + (2v + l)~r/4 + O(I/k). 

Therefore, if r satisfies (35), for 1 => 1, we have 

(36) ]r .] - k + A r +  B I N  C 

for some constants A, B, C. Hence 

pj - C, <= k <-_ qj + C2 

for some constant C1, (:?2 > 0. Hence the cardinal of the set of k satisfying (36) is 

bounded by (q - p) j  + L, L constant > 0. 

Now, the set of N-well approximated numbers in [p, q] is 

(37) N k.J {r: p<=r<=q, lr-a~l~Jl<=lll]'~} . 

For l fixed, the Lebesgue measure 

U { r : p < r < - q , [ r - a k / a , t < l / l j  N} =7  >= jN = 1 
i,k 

(C3 > 0) since N > 2. Therefore the set (37) has zero measure and by letting 

q --- p + 1, p E N we obtain the proposition. [] 

It is interesting to compare Proposition 5 with [8, Lemma 2.1] where examples 

of numbers which are not 2-well approximated by En (n = 2) are discussed. It 

might be that these include all rationals ~ 1 or all quadratic irrationals ~ 1, but 

no such theorem seems to be known. Also, it is easy to see that, for N < 1, every 

positive number is N-well approximated by E,. 

PROPOSmON 6. Let rl, rz be two positive numbers such that rJrt is not N-well  

approximated by En. Denote by AE the positive zeros of I~,,. There is a positive 

constant C such that 

(38) l/2,~(A~ )t >= CI k N +,,-,,,2 

PROOF. Let us denote OrE = Otk.n/2. Recall that Ak = Otk/r, and that 

L/2(rzt) 
/2,~(t) = const • (r2t).,2 . 

From the asymptotic development (13) we have 

ak+ ,  - ~ = 7r + O ( 1 / k  ).  



Vol. 55, 1986 LOCAL TWO-CIRCLES THEOREM 279 

Hence, if k is fixed and ]k is chosen such that [r2Ak - a s l  is minimal we have 

(39) ek = ]r2Ak - ai~]-- -< ~r/2 + O(1/k).  

Let us distinguish two cases: e~ =< 7r/4 or not. In the second case we have 

Icos (r2hk _(n+4 1)7r)l = ]cos ( +  ek + (2 jk+  1 ) 2 +  O ( 1 ) )  I 

= Isin(ek + O(1/k))[> ~ ( k )  = - T - +  0 -->co>O 

for large k. In this case the asymptotic development (12)gives the estimate 

!fz,:(hk )l >---- C,k -`''÷'~'2 

for some C~ > 0 and all large 

By hypothesis we have that 

Therefore ek ~ C3/k N-~ (C3> 

theorem there is a ~ between 

k. 

for all ], k 

~ 1  > C ~  ( G  > 0). 
ak = k N 

0). Suppose also ek < Zr/4. By the mean-value 

qj, and r2Ak such that 

(r2Xk)n~2 = -- r~ ~ j :  • (r~,X~ -- ~,,). 

(Recall J~/2(aj~ ) = 0.) Note that 5k = I~ - a~[ < e~ < ~r/4. Again by (12) we have 

to estimate 

= cos( +- 8k + jklr + O(1/k))  

= - cos 8k + O(1/k).  

Then 

c ,  

Since N _-> 1 the estimate (38) holds in both cases. [] 

PROPOSITION 7. Let [ be a function in L~oc(B(O,R)), gEL~oc(B(O,R)) ,  
supp g C_ B (0, r), g radial. For [xo [ < R - r and p < R - r - [ xo [ we have 

(40) Ap(f*g, xo)=(Ai.l(f, xo )*g( . ) ) (y )  ( l y [ =  p). 
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(The notation indicates that we are convolving in the variable denoted by a 
dot.) 

PROOF. Recall that the average )tp (fi x0) can also be computed by 

A . ( r . x , , )  = fo [(xo+ Ay)dA (n) 

where y is any point with ]y I= p, O(n) is the orthogonal group and dA is the 
normalized Haar measure. Let 

we have 

4,(y) = (,~Hff, xo), g( .  ))(y); 

~b(Y)=fR" (fo(,~ f(xo+ A(y-x)dA)g(x) )  dx 

= fo(,~ (fR" f(xo+ A(y-x))g(x)dx)dA.  

Set u = Ax, then g ( x ) =  g ( u )  and dx = du. Hence 

qb(y)= fo(. ' ( f . .  f (xo+ay-u)g(u)du)dA 

= x . ( f ,  g, x0). 

COROLLARY 8. 

a positive number. Then 

(g (x) * J'"-2)/2(a [ X I )'~ J(n-2F2( 01~ ] Y I ) (4 1 ) (a lx [ )  '"-:'2 / ( Y ) =  g(,~) (alyl) ( . - : , ,2  • 

PROOF. Let ~ E R" be any vector with ] ~ ] = a. then 

( g ( . ) ,  e,~ I .))(y) = ~(~)e,~ I,) 

(42) = g(c~) e '(~l'. 

On the other hand 

~, (e"~ t~,0) = 6",, (a) 

= 2(,-2)/2F(n/2) J~,,-2v2(ap) (~p)(.-~_~,~ • 

Applying now Proposition 7 to (42) we obtain the desired formula (41). 

[] 

Let g be a radial integrable function of compact support and a 

[] 
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PROPOSITION 9. Let r~, r2 be two positive numbers such that r2/r~ is not N-well  

approximated by E,.  Let R be any number, max(rt, r:) < R < r] + r2. Then there is 

a non-zero radial function f ~ C~(B (0, R )) which is mean periodic with respect to 

I.t~ and #, . 

PROOE. Let 4) ~ ~(]0, r~[), ck~ 0 such that supp 4) _C [R - r2, r~[. It follows 

from [16, Theorem 2.1, page 247] that 4) admits a series development of the form 

J(.-2)/2(Akt) 
(43) 4~(t) = k~__~, ak (xkt),.-2,, 2 

where )tk = ak../2/r~. This is the Sturm-Liouviile expansion for a boundary value 

problem singular at t = 0 and derivative equal to zero at t = r,. It can be seen by 

successive integrations by parts that 

(44) l ak I = O(k  -") for every p > 0. 

Since rz/r~ is not N-well approximated by /5, we see that 

bk = ak//.i,_~(Ak ) 

satisfies the same estimates as ak (Proposition 6). Hence the function 

(45) f ( x )  = ~. bk Jl.-2)/2(Ak Ix I) 
Ix I) 

is a C ® radial function in R ~, f ~  0. And, from Corollary 8, it follows that f is/a,, 

mean-periodic. Furthermore 

(ll.r * f ) (  x ) ~'k~,__> ' bk/Z,(hk) (hk Ix l) ̀ "-z,/2 

(46) = (/)(ix I) 

which is zero in B O ,  R - r2) and therefore the function f restricted to B(0, R ) is 

/z~ and/~'2mean-peri°dic- []  

The above propositions can be summarized by the following: 

THEOREM 10. Let r] > 0 a:nd rE > 0 be such that rE~r1 ~ E,.  The necessary and 

sufficient condition on an open set 1) of R" so that the only distribution T E ~ ' ( l ) )  

which can be mean-periodic with respect to both I~, , and I~,~ is T = O, is that ~ is 

the reunion of balls of radii strictly larger than rl + r2. 

An amusing corollary of Theorem 10 is the following: 
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COROLLARY 11. I f  r21rz ~ E2, r~ + rz < R and f E C(B(0,  R))  then the condi- 
tions 

fo f(~)d~ = 0 for every z, ] z I < R - r~ (j = 1, 2), 
B(z,  rj) 

imply that f is holomorphic in the disk B (0, R ). 

5 .  G e n e r a l i z a t i o n s  

After  the paper was written, we became aware of the work of J. D. Smith [18], 

in which local versions of certain two-circles theorems are also proved. Smith's 

results, which require R > 2rl + r2, are less sharp than Proposition 4; nor does 

the method of proof seem to generalize to the other problems discussed in [20], 

e.g. the converse of the mean value property for harmonic functions. The aim of 

this section is to show that the methods used above do generalize. 

DEFINITION. We say that a radial distribution /z of compact support is 

hyperbolic if: 

(i) /z is invertible, and 

(ii) there is a constant C such that every zero A o f / 2  satisfies 

Jim A J ___< C log(2 + J A J). 

THEORE~I 12. Let Iz~, I.t2 . . . .  be a (possibly infinite) family of radial distribu- 
tions of compact support, cv(supp ttj) = B (O, rj ). Suppose { z E Cn : tti ( z ) = 0 V j }  

= 0 ,  tz~ is hyperbolic, and R - r~ > supj rj. Then 

{f 6~ ~ ' (B(0 ,  R )):/z i * [ = 0 Vii = {0}. 

PROOF. Due to the condition on R we can assume f ~_ C®(B(O, R))  as before. 

The proof that leads to (32) can be repeated almost verbatim just using for each 

Ak, zero of /2,, a convenient tti (j ~ 2) with /2i (AE)~ 0. We obtain 

(47) T~s * f ( x ) = O  f o r J x J < R - r , - s u p r j ,  
J 

where 2r~s(t)=/21(0 (t 2 2 -s - ,~ k) , 1 =< S =< mk, mk = multiplicity of )q as a root  of 

/21. 

On the other hand 

(48) ( - 1 ) s ( A + A ~ ) ' ( T k . , * f ) = # I * [ = O  in B ( O , R - r O ,  

therefore,  Tk.~ * f is real analytic, and hence 
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(49) Tk.s * f  = 0 in B(O,R - r , ) ,  

as before. It is at this point we have to be more careful to prove the correct 

version of Proposition 2. It will be replaced by the following: 

LEMMA 13. Let A = {Ak } = set of distinct zeros of 12,, then A = I..JT=oA j, where 

the A i are finite and mutually disjoint sets. There is also a positive integer q such 

that for any p, 0 < p < oo we can write 

(50) cr~ = v~ + ttl * So, 

where vp, Sp are radial distributions satisfying 

(51) 

and 

(52) 

Furthermore, 

supp v~ C_/3(0, rl) 

supp S~ C_/3(0, Max(r .  p ) -  r,). 

(53) 

a convergent series in ~ ( R " ) ,  each vp. s a finite linear combination of the 

distributions Tk.~, hk E A i, 1 <= s <= mE (if mo >- 1 then one denotes by Aqv,.o not only 

a finite linear combination of AqT~.~, hk E A,, but also of 

T,.,,,,,, A T,,.,,,,,, . . . .  A" ' T,,,,,,). 

Once this lemma has been proved, the proof of Theorem 12 is achieved in the 

same way as was done in Proposition 4 and we note that the hypotheses imply 
2r~ < R. 

PROOFOF LEMMA 13. The proof of this lemma proceeds as in Proposition 2 by 

interpolating the values of 6"p on the variety of zeros of /21 (counted with 

multiplicities). We have to repeat with due care the procedure used in [13], [15], 

[17] since we need the precise statements (51), (52), and (53). 

First we note that as in [5, Lemma 4] (cf. also [11, p. 50]), the condition of 

hyperbolicity and the minimum modulus theorem allow us to construct a family 

of Jordan quadrilaterals Fk, k E Z, symmetric with respect to the real axis and 
enjoying the following properties: 

(54) for some d > 0 the horizontal sides lie on the curves 

Im z = --+ log(d + IRe z [), 



284 C.A. BERENSTEIN AND R. GAY Isr. J. Math. 

(55) 

(56) 

(57) 

(58) 

and the vertical sides are arcs of circles; 

0 E int Fo which is symmetric with respect to the origin 

(i.e. if z E Fo then - z E Fo also); 

for k # 0, F-k is the symmetric function of Fk with respect to the origin; 

f o r j #  k, int F~ N intFk = ~ ;  

furthermore, for some positive number a we have that if z U F s, 
dist(z, Fk ) => (a + [ z [ )-° for any k # ]; 

for some positive constant b we have 

diam Fi =< b (1 + [ z I )b 

length F, =< b (1 + I z [)~, 

for any z ~ int Fj, any ]; 

(59) there is a constant c > 0 such that, for any ] and any z E Fj, we have 

>--(c+lzl)c 

and this inequality is valid even for those z such that 

dist(z, Fj) = ½(a + I z [)-a (the same a as in (57)); 

(60) A C U (intFi); 
]=--~ 

(61) for some d > 0: if j _-> 1, z E Fs, then J z J >= j / d  ; 

(62) A,, = A A int E,, At = A O (int F, U int F_j), ] => 1. 

For the sake of definiteness we will index the points in A so that Ao = 0, and, for 

k >= 1, either Re AE > 0 or Re A~ = 0 and Im Ak > 0, and, finally, A-k = -- Ak. 

Now consider the even entire function 

(63) [( t )  = t2q(xt(t), 

for q a positive integer to be chosen conveniently later on. We note that if 

t ~  int Fj tO int Fj then 

1 fr  e(s) as + l__k_fr  e(s) ds 
(64) ¢ b , ( t ) = ~  , [ (s )  s - t  21ri _, [ (s )  s - t  

(where we disregard the second term if j = O) is an even function which is a linear 

and 
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combination of terms of the form (t 2 2 -~ -Ak) , f o r A k E A j a n d l - - < s  < m k i f k  > 1 ,  

1 <-s < mo+2q if k =0 .  Hence d~j can be defined as a rational function 

throughout C and the function f(t)d,j (t) is an even entire function. We want to 

show now that q can be chosen so that 

(65) gft) = j~= f(t)4~j (t) 

is in ~(R") and the series converges in the topology of ~(R"). 

In fact, we have that for I Ira t I --< log(d + Re t ) there is some N > 0 such that 

(66) 

and also 

(67) 

[~p (t)[ _--< C(p)(1 + Itl) N 

I tz,(t)l ~ Co(1 + Itl) ~, 

Therefore, for some N~ > 0 sufficiently large, if 

dist(t, int Fj t3 int F_j) => 1 

we have by (66), (59) and (58), that with respect to an arbitrary point z E int Fj, 

which we can take to be the point in the positive real axis closest to the origin, 

I ¢,(t)l--< (N, + Iz I)" I z 1-2q --< const,  j-2 

by (61) (just take 2q > N , + 2 ) .  Therefore, under the same condition on t we 

have 

(68) I f(t)dP, (t)l <= C,/-2( 1 + I t I) Me rlllm t[ 

Using the condition (58) on the diameter of Fj and (67), this estimate remains 

valid throughout C, after possibly increasing C,, M. This shows that the 
up ~ ~ ( R " )  defined by 

9p (t) = g(t) 

satisfies (51). It is also clear that the distributions u,.s such that t2quo,j = f(t)4~j (t) 
have the properties required by (53) (with special care taken if m. ~ 0). To end 

the proof of the iemma we only have to show that g ( t ) - ~ p  (t) is divisible by 

/L(t); the rest is the same as in Proposition 2. Note that if t U intF s t3 intF_ i then 
we have 

1 f # , (s )  ds 
~,(t)=~/j , . ,+, ._ ,  f ( s )  s - t  
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is holomorphic and we pick a new residue at s = t yielding 

f(t)qJj (t) = [(t)ckj (t) + 6"o (t). 

This concludes the proof of Lemma 13 and Theorem 12. [] 

We give here the local version of Delsarte's theorem for harmonic functions. 

COROLLARY 14. Let H, ={so/r/: ~ : / r /E(0,~) ,  6"~(~)= 6",(r/)= 1}. I f  R > 

r~ + r2, r~/r2~. H, ,  and u is a continuous [unction in B(0, R )  satis[ying 

u ( x ) = A , , ( u , x ) ,  [ora l lx ,  I x l < R - r ~  

and 

u (x )=Ar2(u ,x ) ,  [oral lx ,  Ixl<R-r2, 

then u is harmonic in B(0, R).  

PROOF. From the asymptotic development of the Bessel functions and the 

formula (10), it follows that the radial distributions /zj defined by 

12, (t) = t-2(tr,, - 8)(  0 = (6",, (t) - 1)/t 2 

are hyperbolic. The hypothesis on r,/r2 guarantees these two entire functions 

have no common zeros. Theorem 13 shows now that the distribution Au is zero 

in B(0, R).  

REMARK. As mentioned in [20], Delsarte proved this theorem in R". He also 

showed that H ,  is finite and H~ = {1}. Hence,  at least for dimension 3, any pair of 

distinct positive value rl, r2 would work in the above corollary. 

The several other results in [20] can now be carried over to the local case 

without difficulty. There remains as an open question for the moment  the 

elemination of the invertibility condition on it1, which could probably be done 

following the Euclidean summation method of [6]. More interesting, in our view, 

is to try to extend this theorem to non-compact symmetric spaces of rank 1 or 

even to the Euclidean group, thus obtaining a local version of the Pompeiu 

problem considered in [9]. 

As an example of this let us mention the following corollary of Theorem 13. 

COROLLARY 15. Let R > X/-n a. I[[ ~ L~,,c(B(0, R )) has zero integral over any 

n-cube o[ side a contained in B(O, R), then [ = 0 a.e. 

PROOF. Following the ideas from [9] we see we can consider all radial 
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distributions ~ whose Fourier transforms are of the form 

fo(.) )(o ( k ~ ) T ( k ~ ) d k  = 12(~) (69) 

where O is the cube [ -  a/2, a/2]" and T is a distribution of compact support in 

the ball B(0, e), e + X/na < R. Then, for any such/z, cv(Supp/x) C_/~(0, r), and f 

will satisfy the equations: 

/ ~ * f  = 0  in B(O,R -r). 

Since this set of distributions generates the same closed ideal in g ' (R")  as those 

considered in [9, p. 602], then their Fourier transforms have no common zeros [9, 

section 9]. It only remains to find a distribution that plays the role of /x, in 

Theorem 13. The easiest one is obtained when 

a-'"6 

T -  a x { " "  axe, " 

An easy computation shows that in this case. for /x, = average over O(n) of 

OZ"Xo/OX~ . . .  c9x2., we have 

(70) + ( n l 2 ) + l r  z~  / ~  /2~(t) = const  • ,  ao,-2w-t v n a t /2 )  

which is clearly hyperbolic. (For n = 2, this can be obtained from the Sonine 

second finite integral [19, p. 376].) 
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